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Computer Vision
Computer Science Tripos Part II

Dr Christopher Town
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Recap: Smoothing with a Gaussian

Recall: parameter σ is the “scale” / “width” / “spread” of the 
Gaussian kernel, and controls the amount of smoothing.

…
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Recap: Effect of σ on derivatives

The apparent structures differ depending on Gaussian’s 
scale parameter.

Larger values: larger scale edges detected
Smaller values: finer features detected

σ = 1 pixel σ = 3 pixels

Dr Chris Town
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Scale Invariant Detection

• Consider regions (e.g. circles) of different sizes 
around a point

• Regions of corresponding sizes will look the same 
in both images
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Scale Invariant Detection

• The problem: how do we choose corresponding 
circles independently in each image?
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Scale Invariant Detection

• Solution:
– Design a function on the region (circle), which is “scale 

invariant” (the same for corresponding regions, even if 
they are at different scales)

scale = 1/2

f

region size

Image 1 f

region size

Image 2
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Scale Invariant Detection: 
Summary

• Given: two images of the same scene with a large 
scale difference between them

• Goal: find the same interest points independently
in each image

• Solution: search for extrema of suitable functions 
in scale and in space (over the image)

Methods: 

1. Harris-Laplacian [Mikolajczyk, Schmid]: maximise Laplacian over scale, 
Harris measure of corner response over the image

2. SIFT [Lowe]: maximise Difference of Gaussians over scale and space

Dr Chris Town

Image Matching
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Invariant local features
-Algorithm for finding points and representing their patches should produce 
similar results even when conditions vary
-Buzzword is “invariance”

– geometric invariance:  translation, rotation, scale
– photometric invariance:  brightness, exposure, …

Feature Descriptors
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Feature detection

“flat” region:
no change in all 
directions

“edge”:  
no change along 
the edge direction

“corner”:
significant change 
in all directions

Local measure of feature uniqueness
– How does the window change when you shift it?

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute. Dr Chris Town

Scale invariant detection
Suppose you’re looking for corners

Key idea:  find scale that gives local maximum response in both 
position and scale: use a  Laplacian approximated by difference 
between two Gaussian filtered images with different sigmas)
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Gaussian Pyramid

Source: Irani & Basri

All the extra levels 
add very little 
overhead for memory 
or computation!
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The Gaussian Pyramid

High resolution

Low resolution

2)*( 23  gaussianGG

1G

Image0G
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Source: Irani & Basri
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The Laplacian Pyramid
Gaussian Pyramid Laplacian Pyramid
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Why is this useful?
Source: Irani & Basri

17 Dr Chris Town

Laplacian ~ Difference of Gaussian

B. Leibe

- =

DoG = Difference of Gaussians

- =

Cheap approximation – no derivatives needed.
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DoG approximation to LoG
• We can efficiently approximate the (scale-normalised) 

Laplacian of a Gaussian with a difference of Gaussians:

B. Leibe Dr Chris Town
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Scale-Space Pyramid
• Multiple scales must be examined to identify scale-invariant 

features
• An efficient function is to compute the Difference of Gaussian 

(DOG) pyramid (Burt & Adelson, 1983)

Blur 

Resample

Subtract

Dr Chris Town

Gaussian pyramid
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Laplacian pyramid

Notice that each layer shows detail 
at a particular scale --- these are, 
basically, bandpass filtered versions 
of the image.

Dr Chris Town

Laplacian pyramid algorithm

1x 11xG

111 xGF

111 )( xGFI 

222 )( xGFI 

333 )( xGFI 

2x 2x 3x
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Showing, at full resolution, the information captured at each 
level of a Gaussian (top) and Laplacian (bottom) pyramid.

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf Dr Chris Town

SIFT – Scale Invariant Feature Transform

From: David Lowe (2004)

Dr Chris Town

DoG approximates scale-normalised Laplacian of a Gaussian

(heat diffusion equation)

Dr Chris Town
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Octave increment in scale of the Gaussian Pyramid

followed by factor-of-two downsampling (for efficiency).
To achieve better performance, each octave i is further 
divided into s intervals.

Remember that we defined  neighbouring scales as

So starting with some       , the next scale parameter will 
be           , followed by               etc., so that after s sub-
levels of the pyramid we have a complete octave with  

Therefore
Dr Chris Town
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Key point localization with DoG
• Detect extrema of 

difference-of-Gaussian 
(DoG) in scale space

• Then reject points with 
low contrast 
(threshold)

• Eliminate edge 
responses Candidate keypoints: 

list of (x,y,σ)

Slide credit: David Lowe Dr Chris Town

Example of Keypoint Detection
(a) 233x189 image

(b) 832 DoG extrema

(c) 729 left after peak
value threshold

(d) 536 left after testing
ratio of principle
curvatures (removing        
edge responses)

Slide credit: David Lowe
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Feature Descriptors: SIFT
• Scale Invariant Feature Transform
• Descriptor computation:

– Divide patch into 4x4 sub-patches: 16 cells
– Compute histogram of gradient orientations (8 reference 

angles) for all pixels inside each sub-patch
– Resulting descriptor: 4x4x8 = 128 dimensions

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 
91-110, 2004. 

Slide credit: Svetlana Lazebnik Dr Chris Town

Rotation Invariant Descriptors
• Find local orientation

– Dominant direction of gradient 
for the image patch

• Rotate patch according to this angle
– This puts the patches into a canonical orientation.

Slide credit: Svetlana Lazebnik, Matthew Brown



7

Dr Chris Town
37

Orientation Normalisation: Computation

• Compute orientation histogram
• Select dominant orientation
• Normalise: rotate to fixed orientation 

0 2p

[Lowe, SIFT, 1999]

Slide adapted from David Lowe Dr Chris Town

Feature stability to noise
• Match features after random change in image scale & 

orientation, with differing levels of image noise
• Find nearest neighbor in database of 30,000 features

Dr Chris Town

Feature stability to affine change
• Match features after random change in image scale & 

orientation, with 2% image noise, and affine distortion
• Find nearest neighbor in database of 30,000 features

Dr Chris Town

Distinctiveness of features
• Vary size of database of features, with 30 degree affine change, 

2% image noise
• Measure % correct for single nearest neighbor match

Dr Chris Town

Working with SIFT Descriptors
• One image yields: 

– n 128-dimensional descriptors: each 
one is a histogram of the gradient 
orientations within a patch

• [n x 128 matrix]
– n scale parameters specifying the 

size of each patch
• [n x 1 vector]

– n orientation parameters specifying 
the angle of the patch

• [n x 1 vector]
– n 2D points giving positions of the 

patches
• [n x 2 matrix]

Slide credit: Steve Seitz Dr Chris Town

SIFT

D. Lowe, 2004
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Feature matching

Slides from Steve Seitz and Rick Szeliski Dr Chris Town

Image stitching

Brown, Lowe, 2007

Dr Chris Town

Nearest-neighbor matching

• Solve following problem for all feature vectors, x:

• Nearest-neighbour matching is the major computational 
bottleneck
– Linear search performs dn2 operations for n features 

and d dimensions
– No exact methods are faster than linear search for d>10
– Approximate methods can be much faster, but at the 

cost of missing some correct matches.  Failure rate gets 
worse for large datasets.

Dr Chris Town

Approximate k-d tree matching 

Key idea:
 Search k-d tree bins in 

order of distance from 
query

 Requires use of a priority 
queue

Dr Chris Town
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Slide credit: Anna Atramentov

K-d tree construction
Simple 2D example
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Recognition with Local Features
• Image content is transformed into local features 

that are invariant to translation, rotation, and 
scale

• Goal: Verify if they belong to a consistent 
configuration

Local Features, 
e.g. SIFT

Slide credit: David Lowe Dr Chris Town

Fourier transform

= *

pixel domain 
image

Fourier bases 
are global:  
each transform 
coefficient 
depends on all 
pixel locations.

Fourier 
transform

Dr Chris Town

Gaussian pyramid

= *
pixel image

Overcomplete representation.  
Low-pass filters, sampled 
appropriately for their blur.

Gaussian 
pyramid

Dr Chris Town

Laplacian pyramid

= *
pixel image

Overcomplete representation.  
Transformed pixels represent 
bandpassed image information.

Laplacian 
pyramid

Dr Chris Town

Edge Fitting

• Edge Detection:
– The process of labeling the locations in the image where the gray 

level’s “rate of change” is high.
• OUTPUT: “edgels” locations, 

direction, strength

• Edge Integration, Contour fitting:
– The process of combining “local” and perhaps sparse and non-

contiguous “edgel”-data into meaningful, long edge curves (or closed 
contours) for segmentation

• OUTPUT: edges/curves consistent with the local data

Dr Chris Town
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Framework for snakes
• A higher level process or a user initialises any curve 

close to the object boundary.
• The snake then starts deforming and moving towards 

the desired object boundary.
• In the end it completely “shrink-wraps” around the 

object.
courtesy

(Diagram courtesy “Snakes, shapes, gradient vector 
flow”, Xu, Prince)

Dr Chris Town

Modeling
• The contour is defined in the (x, y) plane of an image as a 

parametric curve
v(s)=(x(s), y(s))

• Contour is said to possess an energy (Esnake) which is defined as 
the sum of the three energy terms. 

• The energy terms are defined in a way such that the final position of 
the contour will have minimum energy (Emin)

• Therefore our problem of detecting objects reduces to an energy 
minimisation problem.

int intsnake ernal external constraE E E E  

A. Poonawala

Dr Chris Town

Internal Energy (Eint )
• Depends on the intrinsic properties of the curve.
• Sum of elastic energy and bending energy.

Elastic Energy (Eelastic):
• The curve is treated as an elastic rubber band 

possessing elastic potential energy.
• It discourages stretching by introducing tension.

• Weight (s) allows us to control elastic energy along 
different parts of the contour. Considered to be 
constant  for many applications.

• Responsible for shrinking of the contour.

21 ( ) | |
2elastic sE s v ds 

s

( )
s

d v sv
d s



A. Poonawala Dr Chris Town

Elastic force
• Generated by elastic potential energy of the curve.

• Characteristics (refer diagram)

elastic ssF v 

A. Poonawala

Dr Chris Town

Bending Energy (Ebending):

• The snake is also considered to behave like a thin metal 
strip giving rise to bending energy.

• It is defined as sum of squared curvature of the contour. 

• (s) plays a similar role to (s).
• Bending energy is minimum for a circle. 

• Total internal energy of the snake can be defined as

21 ( ) | |
2bending ss

s

E s v ds 

2 2
int

1 | | | | )
2elastic bending s ss

s

E E E v v ds    
A. Poonawala Dr Chris Town

Bending force

• Generated by the bending energy of the contour.
• Characteristics (refer diagram):

• Thus the bending energy tries to smooth out the curve.

Initial curve
(High bending energy)

Final curve deformed by 
bending force. (low bending 
energy)

A. Poonawala
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External energy of the contour (Eext)
• Image fitting

For example

•

•

( ( ))ext image
s

E E v s ds 

A. Poonawala Dr Chris Town

Dr Chris Townhttp://www.robots.ox.ac.uk/~ab/dynamics.html

dancemv.mpg

leafmv.mpg

Dr Chris Town

Dr Chris Town Dr Chris Town
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Generating Functions

Since the wavelets are dilates, translates, and rotates of each other, such a transform 
seeks to extract image structure in a way that may be invariant to dilation, translation, 
and rotation of the original image or pattern.

Dr Chris Town

Dr Chris Town

Gabor wavelets
c(x,y)  e

 x 2 y 2

2 2 cos 2u0x 

u0=0

s(x, y)  e
 x 2 y 2

2 2 sin 2u0x 

U0=0.1 U0=0.2

A. Torralba Dr Chris TownA. Torralba

Dr Chris Town

Dilation and rotation

Dr Chris Town

Frequency, orientation and 
symmetry (phase)
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Wavelet (QMF) transform

= *
pixel imageOrtho-normal 

transform (like 
Fourier transform), 
but with localized 
basis functions.  

Wavelet 
pyramid

Dr Chris Town

= *
pixel image

Over-complete 
representation, 
but non-aliased 
subbands. 

Steerable 
pyramid

Multiple 
orientations at 

one scale  

Multiple 
orientations at 
the next scale  

the next scale…  

Steerable pyramid


