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5. Multi-scale feature detection and matching.
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Recap: Smoothing with a Gaussian

Recall: parameter o is the “scale” / “width” / “spread” of the
Gaussian kernel, and controls the amount of smoothing.
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Recap: Effect of o on derivatives

o =1 pixel o = 3 pixels

The apparent structures differ depending on Gaussian’s
scale parameter.

Larger values: larger scale edges detected

Smaller values: finer features detected
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Multi-scale feature detection and matching

e An interesting property of edges as defined by the zero-crossings of multi-
scale operators whose scale is determined by convolution with a Gaussian,
is that as the Gaussian is made coarser (larger), new edges (new zero-
crossings) can never appear. They can only merge and thus become fewer
in number. This property is called ca
‘monotonicity,” or ‘the evolution property,

y. It is also sometimes called

or ‘nice scaling behaviour.’

One reason why causality is important is that it ensures that features
detected at a coarse scale of analysis were not spuriously created by the
blurring process (convolution with a low-pass filter, which is the normal
way to create a multi-scale image pyramid using a hierarchy of increasing
kernel sizes). One would like to know that image features detected at a

certain scale are “grounded” in image detail at the finest resolution.
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Multi-scale feature detection and matching

For purposes of edge detection at multiple scales, a plot showing the evolu-
tion of zero-crossings in the image after convolution with a linear operator,
as a function of the scale of the operator which sets the scale (i.e. the
width of the Gaussian), is called scale-space.

e Scale
ality of the signal. Thus a 1D waveform projects into a 2D scale-space.

-space has a dimensionality that is one greater than the dimension-

An image projects into a 3D scale space, with its zero-crossings (edges)
forming surfaces that evolve as the scale of the Gaussian changes. The
scale of the Gaussian, usually denoted by o, creates the added dimension.
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Multi-scale feature detection and matching

e A mapping of the edges in an image (its zero-crossings after such filtering

operations, evolving with operator scale) is called a scale-space fingerprint.
Several theorems exist called “fingerprint theorems” showing that the

Gaussian blurring operator uniquely possesses the property of causality.

In this respect, it is a preferred edge detector when combined with a
bandpass or differentiating kernel such as the Laplacian.

e However, other non-linear operators have advantageous properties, such as

reduced noise-sensitivity and greater applicability for extracting features

that are more complicated (and more useful) than mere edges.
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Scale Invariant Detection

* Consider regions (e.g. circles) of different sizes
around a point

* Regions of corresponding sizes will look the same
in both images
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Scale Invariant Detection

* The problem: how do we choose corresponding
circles independently in each image?
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Scale Invariant Detection

* Solution:
— Design a function on the region (circle), which is “scale
invariant” (the same for corresponding regions, even if
they are at different scales)

Image 1 f Image 2
scale = 1/2
=) \
region size region size
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Scale Invariant Detection:
Summary

» Given: two images of the same scene with a large
scale difference between them

* Goal: find the same interest points independently
in each image

» Solution: search for extrema of suitable functions
in scale and in space (over the image)
Methods:

1. Harris-Laplacian [Mikolajczyk, Schmid]: maximise Laplacian over scale,
Harris measure of corner response over the image

2. SIFT [Lowe]: maximise Difference of Gaussians over scale and space
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Image Matching

Multiple View
Geometr

I comiiter vision
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Invariant local features

-Algorithm for finding points and representing their patches should produce
similar results even when conditions vary
-Buzzword is “invariance”

— geometric invariance: translation, rotation, scale

— photometric invariance: brightness, exposure, ...
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Feature Descriptors
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Feature detection

Local measure of feature uniqueness
— How does the window change when you shift it?

“flat” region: “edge”: “corner”:
no change in all no change along significant change
directions the edge direction in all directions

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute. Dr Chris Town

Scale invariant detection

Suppose you're looking for corners

Key idea: find scale that gives local maximum response in both
position and scale: use a Laplacian approximated by difference
between two Gaussian filtered images with different sigmas)

Difference Of Gaussians

TwoDi
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Gaussian Pyramid

All the extra levels
add very little
overhead for memory
or computation!

Source: Irani & Basri Dr Chris Town

The Gaussian Pyramid
=(G3*gaussiar)»l«2 J

Low resolution
Own-sample

High resolution

Source: Irani & Basri Dr Chris Town

The Laplacian Pyramid
L, =G, —expand(G,.,)

Gaussian Pyramid Laplacian Pyramid

Laplacian ~ Difference of Gaussian

DoG = Difference of Gaussians

Cheap approximation — no derivatives needed.

B. Leibe
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DoG approximation to LoG

Difference of Gaussians

Gaussian 02
Laplacian of Gaussian (0.1.3)

* We can efficiently approximate the (scale-normalised)
Laplacian of a Gaussian with a difference of Gaussians: —

Caussian 01)
DoG

N 024
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B. Leibe
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Scale-Space Pyramid

* Multiple scales must be examined to identify scale-invariant
features

* An efficient function is to compute the Difference of Gaussian
(DOG) pyramid (Burt & Adelson, 1983)
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Gaussian pyramid
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Laplacian pyramid algorithm

Gx, =x,

Notice that each layer shows detail
at a particular scale --- these are,
basically, bandpass filtered versions
of the image.

Laplacian pyramid
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Showing, at full resolution, the information captured at each
level of a Gaussian (top) and Laplacian (bottom) pyramid.

y y o i 4
et st g vl o e

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf ~ 'FEE TRANSACTIONS ON COMMUNICATIONS, VOL COM31NO. 4 APKIL 1933

SIFT — Scale Invariant Feature Transform

Scale
(next
octave)

Scale
(first
octave)
Difference of
Gaussian Gaussian (DOG)
- y Dr Chris Town

DoG approximates scale-normalised Laplacian of a Gaussian

a*V3iG

DoG(z,y,0) = (G(z,y. ko) — G(z,y.0)) * I(x,y)

1 2102 /202
Glz. vy, _ j—(a +y2)/20°
(=4:) 2o
(‘:)G _ UVZG (heat diffusion equation)
do

If we consider the finite difference approximation to g—? at neighbouring scales
ko and o

G _ G(w,y,ko) —G(z,y,0)

Do ko —o
then by multiplying by ko — o = (k — 1)o we get

G(z,y. ko) — G(z,y,0) = (k — 1)o>V3G (15)
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e The o of the Gaussian filters smoothes the image by blurring it, which
helps to eliminate noise but also eliminates detail (low-pass filter in the
Fourier domain). Convolution with a Gaussian followed by re-sampling is
the standard technique for downsampling images, for reasons discussed at
the start of this section.

e The constant £ 1s a multiplicative factor between neighbouring Gaussian-
blurred 1mages whose difference we wish to compute to extract stable
features. SIFT does this by comparing each pixel in the DoG images to
its eight neighbours at the same scale and nine corresponding neighbouring
pixels in each of the adjacent scales (pyramid levels).
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Octave increment in scale of the Gaussian Pyramid
Tip1 = 205

followed by factor-of-two downsampling (for efficiency).
To achieve better performance, each octave i is further
divided into s intervals.
Remember that we defined neighbouring scales as

DoG(z,y,0) = (G(z.y, ko) — G(z,y,0)) * I(z,y)
So starting with some ¢, the next scale parameter will

be Loy, followed by /:):aq etc., so that after s sub-
levels of the pyramid we have a complete octave with

A‘SJQ = 200
Therefore k= 21/5
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=24
and the value of o at octave i and interval n of the pyramid is given by
o(i,n) = 09 245 n € 0,s—1]

A value of s = 3 was found by Lowe to provide a good accuracy vs efficiency
trade-off. The number of octaves depends on original image resolution.
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Input Image

Octave Sub-Level
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Figure 2: An example of a Gaussian scale-space generated from the input image. The smoothing

is increased from left to right by increasing the variance of the Gaussian kernel which is convolved with the

grayscale image. Each level, from top to bottom, is produced by downsampling by two from the previous level
before further smoothing.

Octave
h ...
] | |

Figure 3: The ‘Difference of Gaussians’ (DoG) scale-space corresponding to the Gaussian scale-
space of Figure 2. At cach level in the Gaussian scale-space, the difference between successive images provides
the DoG scale-space.
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Key point localization with DoG Example of Keypoint Detection
hd Detect eXtrema Of ST (a) 233x189image
difference-of-Gaussian T b)832D0G extrema
. (c) 729 left after peak
(DoG) in scale space e LTTTTET value threshold
. . . AT (d) 536 left after testing
* Then reject points with LT Z L7 ratio of principle
""’”"’” curvatures(removmg
low contrast = edge responses)
LT T
(threshold) e
* Eliminate edge J

responses Candidate keypoints:

list of (x,y,0)

| Slidecredit: David lowe Dr Chris Town
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Slide credit: David Lowe,

Feature Descriptors: SIFT

e Scale Invariant Feature Transform
* Descriptor computation:
— Divide patch into 4x4 sub-patches: 16 cells

— Compute histogram of gradient orientations (8 reference
angles) for all pixels inside each sub-patch

— Resulting descriptor: 4x4x8 = 128 dimensions

S TP
* K>
NN
A,k&*

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” L/CV 60 (2), pp.
91-110, 2004.

| Slide credit: Svetlanalazebnik Dr Chris Town

— Dominant direction of gradient

Rotation Invariant Descriptors
* Find local orientation
A
for the image patch
* Rotate patch according to this angle

— This puts the patches into a canonical orientation.

Slide credit- Svetlana | azebnik Matthew Brown Dr Chris Town




Orientation Normalisation: Computation
[Lowe, SIFT, 1999]
* Compute orientation histogram
* Select dominant orientation
* Normalise: rotate to fixed orientation

Feature stability to noise

* Match features after random change in image scale &
orientation, with differing levels of image noise

* Find nearest neighbor in database of 30,000 features
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Slide adapted from David [owe Dr Chris Town Dr Chris Town

Feature stability to affine change

* Match features after random change in image scale &
orientation, with 2% image noise, and affine distortion

* Find nearest neighbor in database of 30,000 features
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Distinctiveness of features

* Vary size of database of features, with 30 degree affine change,
2% image noise

* Measure % correct for single nearest neighbor match
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Number of keypoints in database (log scale)
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Working with SIFT Descriptors

« Oneimage yields:
— n 128-dimensional descriptors: each
one is a histogram of the gradient
orientations within a patch

* [nx 128 matrix]

— n scale parameters specifying the
size of each patch

« [nx 1 vector]

— norientation parameters specifying
the angle of the patch

« [nx 1 vector]

— n 2D points giving positions of the
patches

* [nx 2 matrix]

|___slide credit: Steve Seit: Dr Chris Town

SIFT

Figure 12: The training images for two objeets are shown on the left. These can be recognized in a
cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown
on the right. A parallelogram is drawn around each recognized object showing the boundaries of the
original training image under the affine ansformation solved for during recognition. Smaller squares
indicate the keypoints that were used for recognition.

D. Lowe, 2004 Dr Chris Town




Feature matching

Slides from Steve Seitz and Rick Szeliski Dr Chris Town

Image stitching

(©) SIFT matches 1 (@ STFT matches 2

() Images aligned according to a homography

Brown, Lowe, 2007 Dr Chris Town

() RANSAC inliers 1 () RANSAC inliers 2

Nearest-neighbor matching

+ Solve following problem for all feature vectors, x:

Vi NN(G) = argmin ||x; —x;ll, i # j

* Nearest-neighbour matching is the major computational
bottleneck

— Linear search performs dn? operations for n features
and d dimensions

— No exact methods are faster than linear search for d>10

— Approximate methods can be much faster, but at the
cost of missing some correct matches. Failure rate gets
worse for large datasets.
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Approximate k-d tree matching

1 T T T

Key idea: ) i ata points
. . emaining search hypersphere;
m Search k-d tree bins in 08 e
order of distance from
0.6 /_\
query .
m Requires use of a priority 04 \J
queue .
02F e
0
0 02 04 0.6 0.8 1

Dr Chris Town

K-d tree construction

Simple 2D example
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Slide credit: Anna Atramentov
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K-d tree query
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Slide credit: Anna Atramentov
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Recognition with Local Features

* Image content is transformed into local features
that are invariant to translation, rotation, and
scale

Local Features,
e.g. SIFT

49 pr Chris Town

Slide credit: David Lowe.

Fourier transform

= k
Fourier Fourier bases pixel domain
transform are global: image
each transform
coefficient

dependson all

pixel locations.
Dr Chris Town

Gaussian pyramid

Gaussian i
pyramid —

pixel image

Overcomplete representation.
Low-pass filters, sampled
appropriately for their blur.
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Laplacian pyramid

Laplacian
pyramid

pixel image

Overcomplete representation.
Transformed pixels represent

bandpassed image information. br Chris Town

Edge Fitting

e Edge Detection:

— The process of labeling the locations in the image where the gray
level’s “rate of change” is high.

* OUTPUT: “edgels” locations, N~ 7=
direction, strength

—_—

~
(RN

» Edge Integration, Contour fitting:

— The process of combining “local” and perhaps sparse and non-
contiguous “edgel”-data into meaningful, long edge curves (or closed
contours) for segmentation

* OUTPUT: edges/curves consistent with the local data
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Active Contours (“snakes”)

arg min/ ((J[ — 1)2 + )\(J[ﬂ)z) dx

where M is the shape model, and [ is the image data

Thus we have the combination of two factors: a data term and a cost term
(the latter sometimes also called a smoothness term or an energy term), which
are in contention, in the following sense: we could fit the available edge data
with arbitrarily high precision, if we used a model with enough complexity;
but simpler models are generally more useful and credible than overlv com-
plex models (which “over-fit” the data).

Dr Chris Town




Framework for snakes

» Ahigher level process or a user initialises any curve
close to the object boundary.

* The snake then starts deforming and moving towards
the desired object boundary.

* Inthe end it completely “shrink-wraps” around the
object.

es,shapes, radient vector
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Modeling

The contour is defined in the (x, y) plane of an image as a
parametric curve

Contour is said to possess an energy (E;,.xe) Which is defined as
the sum of the three energy terms.

E E +F +F

snake — internal external constraint

The energy terms are defined in a way such that the final position of
the contour will have minimum energy (E;n)

Therefore our problem of detecting objects reduces to an energy
minimisation problem.

A.Poonawala Dr Chris Town

Internal Energy (E;,)
» Depends on the intrinsic properties of the curve.
* Sum of elastic energy and bending energy.

Elastic Energy (E.pstic):

* The curve is treated as an elastic rubber band
possessing elastic potential energy.

+ Itdiscourages stretching by introducing tension.

_ dv(s)

1 2
Eelusl[c - E'S[G(S) | Vs | ds Vs ds

* Weight a(s) allows us to control elastic energy along
different parts of the contour. Considered to be
constant o for many applications.

» Responsible for shrinking of the contour.

A.Poonawala Dr Chris Town

Elastic force

* Generated by elastic potential energy of the curve.
F

elastic

=0V

» Characteristics (refer diagram)

L,_,’— e )

A.Poonawala Dr Chris Town

Bending Energy (Ebending):

* The snake is also considered to behave like a thin metal
strip giving rise to bending energy.

+ lItis defined as sum of squared curvature of the contour.

1
Eveniing = | BE) v, [ ds

* B(s) plays a similar role to a(s).
» Bending energy is minimum for a circle.

+ Total internal energy of the snake can be defined as
1
B =+ g =[0I 4B, P

A.Poonawala Dr Chris Town

Bending force

* Generated by the bending energy of the contour.
» Characteristics (refer diagram):

!

Finial curve deformed by
bending force. (low bending
energy)

Initial curve
(High bending energy)

» Thus the bending energy tries to smooth out the curve.

A.Poonawala Dr Chris Town
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External energy of the contour (E,)
+ Image fitting

Eext = J.Eimage (V(S))dS

For example
¢ Eege=—|VI(z,y)/’

Eeage = — |G x VI

Figure 5 Active contours are deformable yet constrained shape models. The
“snakes” in the box show radial edge gradients at the iris boundaries, and
active contour approximations (dotted curves).

A. Poonawala Dr Chris Town Dr Chris Town
2D Gabor “Logons;” Quadrature pair wavelets
leafmv.mpg : _ o
f(x) = exp(—ipo(z — x0)) exp(—(z — x0)"/a”)
dancemv.mpg
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http://www.robots.ox.ac.uk/~ab/dynamics.htm|

F(p) = exp(—izo(pe — o)) exp(—(p — #0)202)

Note that for the case of a wavelet f(x) centred on the origin (zy = 0). its
Fourier Transform F(z1) is simply a Gaussian centred on the modulation fre-
quency it = o, and whose width is 1/, the reciprocal of the wavelet’s space
constant. This shows that it acts as a bandpass filter, passing only those fre-
quencies that are within about j:% of the wavelet’s modulation frequency ji.

Dr Chris Town

Generalisation of wavelet Logons to 2D for image analysis

Two-dimensional Gabor wavelets have the functional form:

fx, y) = (f[(1'*10)2/02+(y*90)2/32]C—i[un(r—rn)-H'n(y—y«»)]

where (zq, o) specify position in the image, (o, 3) specify effective width and
length, and (up,vp) specify modulation, which has spatial frequency wy =

Vud + 2 and direc

ion 6y = arctan(vg/ug). (A further degree-of-freedom not

included above is the relative orientation of the elliptic Gaussian envelope,
which creates cross-terms in xy.)

2D Fourier transform F(u,v)

Fu, v) = e~ lomu0et w5 =ileo u—so)+yo(w—ro)]

Dr Chris Town

The real part of one member of the 2D Gabor filter family, centred at the
origin (zg,yo) = (0,0) and with unity aspect ratio 3/a =1

2D Gabor Wavelet: Real Part 2D Fourier Transform

Figure 6 The real part of a 2D Gabor wavelet, and its 2D Fourier transform.

Dr Chris Town
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Generating Functions

By appropriately parameterising them for dilation, rotation, and translation,
2D Gabor wavelets can form a complete self-similar (but non-orthogonal) ex-
pansion basis for images,

__ o—2m biooF
‘I’mpq&‘(wry) =1 Q(Iry)
where the substituted variables (2’,y’) incorporate dilations in size by 27,
translations in position (p, ¢), and rotations through orientation 6:
' =27z cos(0) +ysin(0)] — p
y' =2""[—zsin(0) + ycos(d)] — ¢
Since the wavelets are dilates, translates, and rotates of each other, such a transform

seeks to extract image structure in a way that may be invariant to dilation, translation,
and rotation of the original image or pattern.

Dr Chris Town i . -Di : Dr Chris Town

Gabor wavelets

v, (x,y)=e 2 cos(2mu,x)

up=0

X2+y2
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A. Torralba Dr Chris Town A. Torralba Dr Chris Town

w,(x,y)=e " sin(2mu,x)

Dilation and rotation Frequency, orientation and
symmetry (phase)

Dr Chris Town Dr Chris Town




Gabor-Heisenberg-Weyl Uncertainty Principle

If we define the “effective support” of a function f(z) by its normalized variance,
or the normalized second-moment
boo . 9
, @) @) e o) e
(Az)* = Foo N
/ f(z) f*(z)dz
)
where z( is the mean value, or first-moment, of the function
foo .
T9 = / zf(z)f*(z
Joo

and if we similarly define the effective support of the Fourier Transform F(yu) of
the function by its normalized variance in the Fourier domain

o] FWF ()~ wo)dn
[ FGF ()

where g is the mean value, or first-moment, of the Fourier transform F(u)

(Ap)

fo= [T WF(0)F* ()
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Gabor-Heisenberg-Weyl Uncertainty Principle

then it can be proven (by Schwartz Inequality arguments) that there exists a|
fundamental lower bound on the product of these two “spreads,” regardless of]
the function f(z) !

(Az)(Ap)

The unique family of signals that actually achieve the lower bound in the Gabor-
Heisenberg-Weyl Uncertainty Relation are the complex exponentials multiplied

by Gaussians. These are sometimes referred to as “Gabor wavelets:”

fla) = e imore low0al

Dr Chris Town

Unification of Domains

F) = om0/t
The single parameter a (the space-constant in the Gaussian term) actually builds
a continuous bridge between the two domains: if the parameter a is made very
large, then the second exponential above approaches 1.0, and so in the limit our

(‘,xpausi()n basis becomes

lim f(z) =e "

450
the ordinary Fourier basis! If the parameter a is instead made very small, the
Gaussian term becomes the approximation to a delta function at location z,,
and so our expansion basis implements pure space-domain sampling:
lim f(z)=d(z — x)
po,a—0
Hence the Gabor expansion basis “contains” both domains at once. It allows us
to make a continuous deformation that selects a representation lying anywhere
on a one-parameter continuum between two domains that were hitherto distinct

Feature Detection hy Quadrature Filter Energy. Left panel: original image.
EY
v superimposed on the o

Hlustration of Faci

tabor wavelet. convolution; the ima

Right panel (clockwise from top left): the real p:

and this ene: inal (faint) image, illus-

inary part; the modulus en
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trating successful feature locali

Wavelet _—
pyramid =

pixel image

Ortho-normal
transform (like
Fourier transform),
but with localized
basis functions.
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Multiple —
orientations at/ | ]
== onescale | — *
Steerable \ T pixel image
pyramid P **
Multiple J .
orientations at_ — ]
the next scale { — | Over—complete
I —] representation,
the next scale.../J - — but non-aliased
1‘ subbands.
U [  —— | Dr Chris Town
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